

KUKEN KOGYO CO., LTD.

Export Group of Cooling Tower for Industrial Use, International Business Division

2020/10/28

What is Kuken?

We, Kuken Kogyo, are a cooling tower manufacturer with the largest market share in Japan. We are going to develop our high quality cooling towers all over the world in the future.

- Main business
 Domestic Market Share
- Establishment
- Headquarters
- Factory and Offices
- Subsidiary Companies

Cooling Tower Approx. 50% (For Building) In 1956 In Fukuoka, Japan A Factory in Fukuoka 6 Branches in Japan

- SHIN NIHON REIKI CO., LTD
- Kucho Giken Co., Ltd
- Partner companies in various countries

International and domestic lines of business KUKEN

Air Conditioning System

 Cooling Tower
 (A/C) Wind Outlet
 Damper

 Equipment Installation

 Government and Municipal Offices
 Museum / Power Plant etc.

 An agency for Mitsubishi Eclectic

 Packaged Air Conditioner
 Elevator

Kuken Group

KUKEN KOGYO Co., Ltd.

- Major products : Cooling Tower for buildings / plants / factories
- Main market : All the countries in the world
- Number of employees : 454
- Website : <u>https://www.kuken.com/en/</u>

Shin Nihon Reiki Co., Ltd.

- Major products : Cooling Tower for plants / factories
- Main market : Japan
- •Number of employees : 82
- Website : <u>http://www.reiki-ct.co.jp/english/index.html</u>

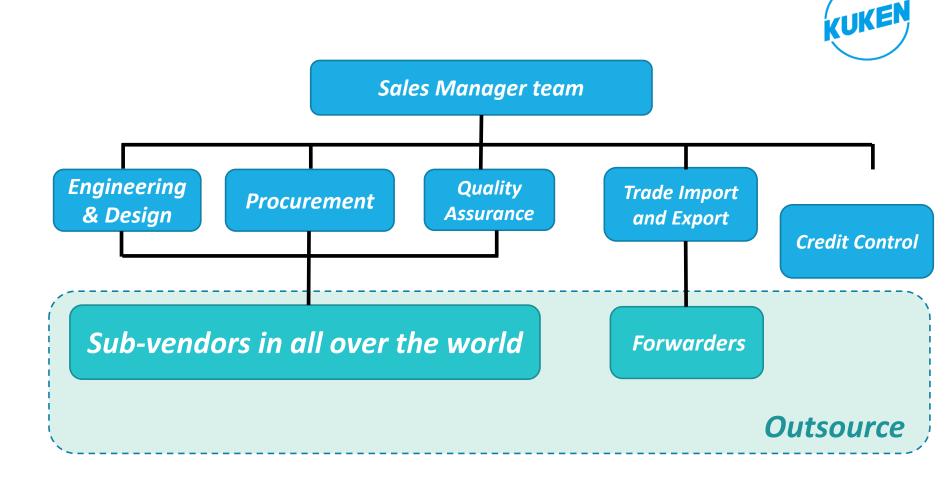
Kucho Giken Co., Ltd.

- Major products : Air-diffuser / Damper
- Main market : Japan
- Number of employees : 239
- •Website : <u>http://www.kuchogiken.co.jp/</u>

Corporate Philosophy

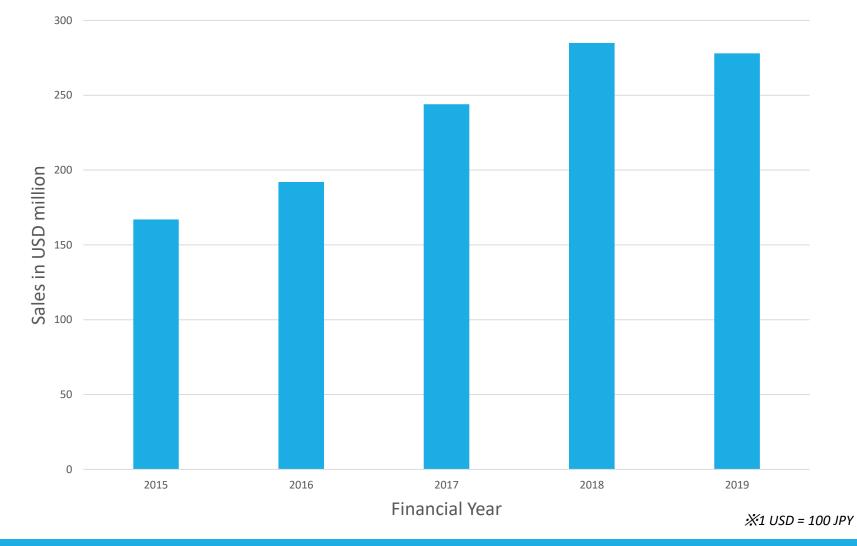
CEO : Takashi Naraki

Corporate Philosophy


We, Kuken Kogyo Co., Ltd., have been providing total service of cooling tower including design and manufacturing to satisfy all customers' needs in various industrial fields for more than 50 years. Our Business was originated in the sprit of nature conservation to protect the irreplaceable and beautiful earth from environmental pollution for all livings, therefore, we have been providing environmentally friendly cooling towers for saving precious water resources.

From the spirit, the energy efficiency technology on our cooling tower was investigated, which has been developing and will never stop. We achieve high energy efficiency performance by the designing and manufacturing of efficient equipment which results in the best operational control.

Furthermore, the simulation technology using the latest fluid and structural analysis and measuring techniques are optimized to ensure the design and manufacturing.


As a total solution provider of industrial cooling tower, we continue serving for every customer to satisfy what they need with concerning the environment.

Export Group of Cooling Tower for Industrial Use's Organization Chart

Our Experiences with Industrial CT

- Maximum Water Flow: <u>42,000 m³/h</u>
- More than <u>2,700</u> units (8,200 cells) in total to various factories
- Over **<u>200</u>** units were supplied to abroad
- (Power generating plants in abroad: about 50 units)

Structures

RC (Reinforced Concrete)

RC is the strongest type of all structures.

FRP (Fiberglass-Reinforced Plastic)

FRP is the lightest type of all structures, and it has high chemical resistance. We provide FRP with fire retardant and UV resistance upon requests.

Structures

HDGS (Hot-Dip Galvanized Steel)

Steel with HDG is high durable structure. Stainless steel (SS) can be applied upon request.

WOOD

Wood structure which is applied to rot-proof has highly acid- resistance.

Fiberglass-Reinforced Plastic

Reinforced Concrete

Geothermal Power Plant (Indonesia)

Our Experiences

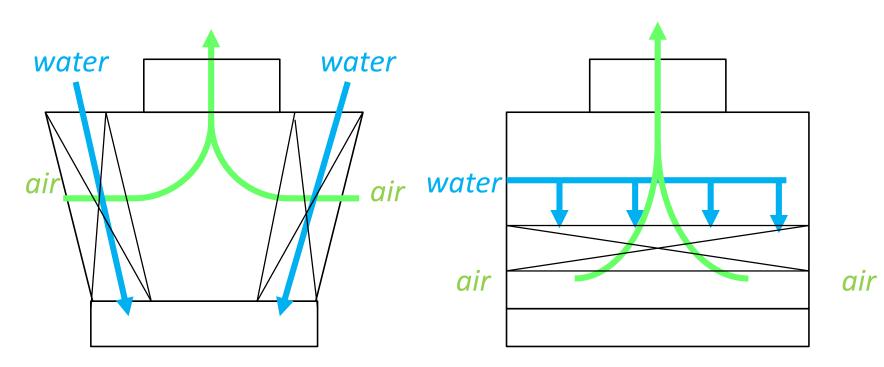
2019 CT for Geothermal Power Plant (Japan) 11,700m3/h x 1 units (10 cells)

Our Experiences

2015 CT for Geothermal Power Plant (Indonesia) 6,352m3/h x 2 units (each 3 cells)

Our Experiences

CT for Power Plant (Japan) 30,000m3/h x 1 unit (10 cells)


2020/10/28

COOLING TOWER TYPE

CROSSFLOW

CONTERFLOW

CROSSFLOW COOLING TOWER (Japan)

PLANT / LOCATION	Power Plant
TYPE	Cross flow
CIRCULATING WATER FLOW	12,600 m3/h
HOT WATER TEMPERTURE	29.0 °C
COLD WATER TEMPERTURE	19.0 °C
WET BULB TEMPERTURE	10.9 °C
FRAME MATERIAL	Steel (Hot Dip Galvanizing)

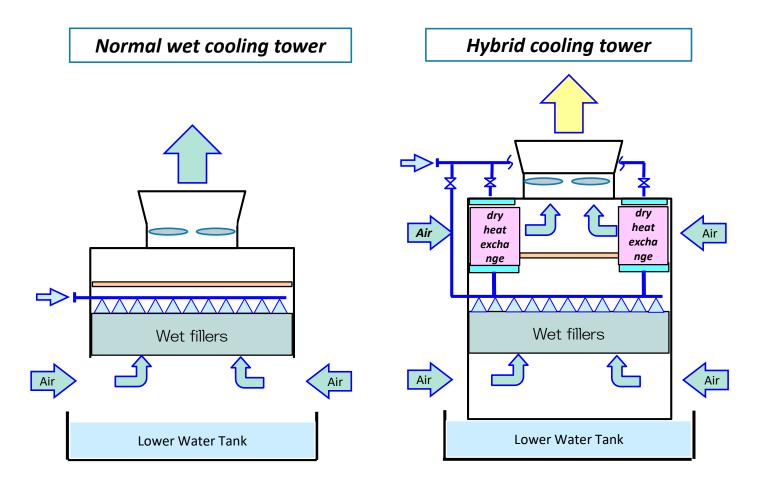
CROSSFLOW COOLING TOWER (Japan)

PLANT / LOCATION	District Heating and Cooling / Chiba Station
TYPE	Cross flow
CIRCULATING WATER FLOW	6,034m3/h
HOT WATER TEMPERATURE	38.0°C
COLD WATER TEMPERATURE	32.0°C
WET BULB TEMPERATURE	27.0°C
FRAME MATERIAL	Steel (Hot Dip Galvanizing)

COUNTERFLOW COOLING TOWER (Japan)

PLANT / LOCATION	Power Plant
TYPE	Counterflow
CIRCULATING WATER FLOW	17,500m3/h
HOT WATER TEMPERATURE	42.5° C
COLD WATER TEMPERATURE	32.5°C
WET BULB TEMPERATURE	28.0°C
FRAME MATERIAL	Steel (Hot Dip Galvanizing)

COUNTERFLOW COOLING TOWER (Japan)



PLANT/LOCATION	Power Plant
TYPE	Counterflow
CIRCULATING WATER FLOW	10,700m3/h
HOT WATER TEMPERATURE	26.9°C
COLD WATER TEMPERATURE	17.0°C
WET BULB TEMPERATURE	4.0° ℃
FRAME MATERIAL	Steel (Hot Dip Galvanizing)
NOISE	Less than 85dB(A) at one meter from the louver / at a height of 1meter above cooling tower fan deck

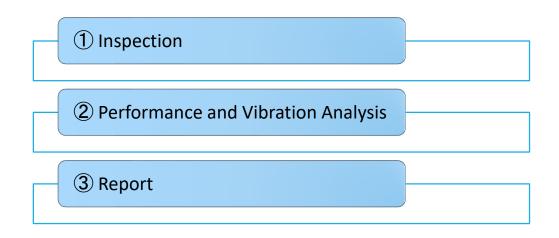
Wet Type & Hybrid Type

PLANT / LOCATION	Power Plant
TYPE	Crossflow
CIRCULATING WATER FLOW	14,100m3/h
HOT WATER TEMPERATURE	32.2°C
COLD WATER TEMPERATURE	21.5°C
WET BULB TEMPERATURE	10.8°C
FRAME MATERIAL	FRP
NOISE	Less than 75dB(A) at 10 meters from the tower / at a height of 1.2 meters above the ground level
Invisible Plume	Less than 30 meters (Ambient DBT: 5.0°C , RM: 70%)

COOLING TOWER WITH PLUME ABATEMENT (Japan)

PLANT / LOCATION	Power Plant			
TYPE	Crossflow			
CIRCULATING	10.000m2/h			
WATER FLOW	19,000m3/h			
HOT WATER	41.0°C			
TEMPERATURE	41.00			
COLD WATER	31.0°C			
TEMPERATURE	51.0 0			
WET BULB	27.0°C			
TEMPERATURE	27.0 0			
FRAME MATERIAL	Steel (Hot Dip Galvanizing)			
	Less than 77dB(A) at 10 meters			
NOISE	from the opposite point of			
NOISE	motor/at a height of 1 meter			
	above the ground level			
Invisible Plume	Less than 30 meters (Ambient			
Invisible Plume	DBT: 5.5℃, RM: 62%)			

Power Plant		
Counterflow		
30,000m3/h		
30,000113/11		
41.6° C		
41.0 0		
32.0°C		
52.00		
27.0°C		
27.00		
FRP		
Less than 85dB(A) at 1 meter		
from the louver		
Less than 20 meters (Ambient		
DBT: 4°C , RM: 65%)		

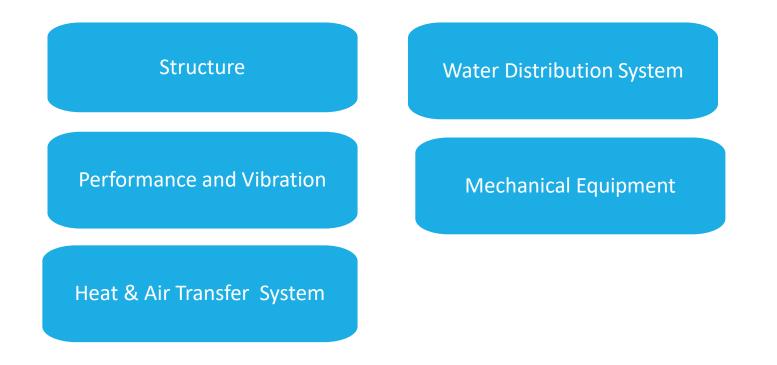


HYBRID TYPE

Maintenance Services

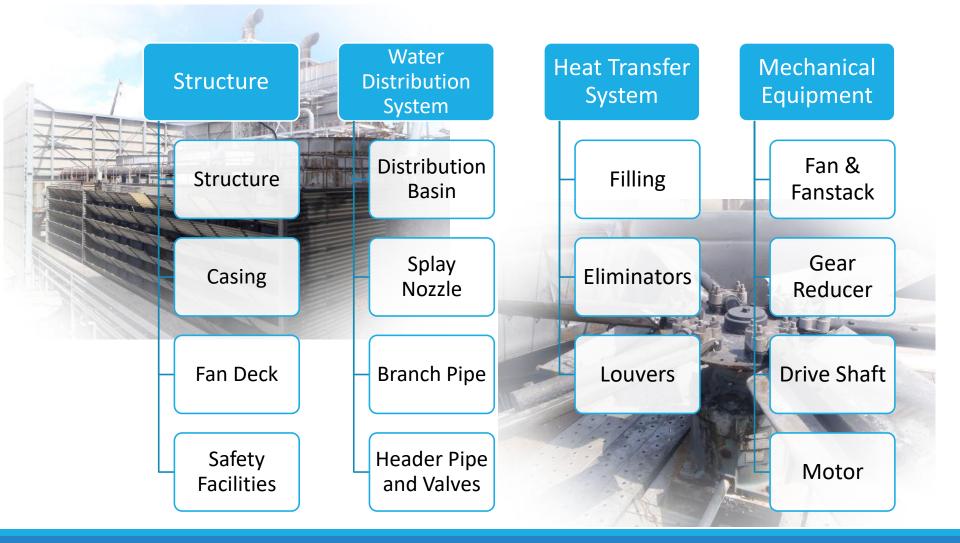
Kuken offers the best solution for all cooling tower

Maintenance Services


If your cooling tower has problems, it may cause unexpected shutdown not only on cooling tower but also on whole your plant.

- Structure degradation
- Abnormal vibration
- Collapse by strong wind

INSPECTION



Kuken provides total inspection service for various cooling towers.

(1)

Based on the data collecting by inspection, SNR offers the best maintenance for your existing cooling towers.

POINT: Wooden cooling towers are evaluated by using pilodyn wood testing machine

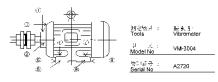
INSPECTION

[Pilodyn wood testing machine]

[Intrusion testing machine for wood]

ase refer next page for the description of Judgment leve

Shin Nihon Reiki Co.,Ltd



Cooling tower performance and vibration analysis of cooling fan are conducted.

CROLATING WATER PLOT	1CST 1127	(-le)	
40" YAR'ER TE IPERATURE	25.9	Em ³ eC 1921	
CITED THAT BIT TEMPERATURE	25.0	[6]	
ALIMENT WET SUBSTITUTE	25.4	[6]	
TOTAL PAY STREET OUTPUT POWER.	83.7	INW	
CONDITION OF THIS CURVE>			
ORDU ATTAGUNITED (DA		onvetare (
40" YAK'ER TE IPERATURE	45.0 ('CJ	constant	
	_		
Genge-cold water her paral, ex. 35%			Davige pole
2 .			
t K			
Freeded cak		$ \mathcal{M}$	
30 vals bette sam			
Population		11 11	1
1 .			
1.			
and a second sec			
			11
76			
		Design wellball	ล 1
		Crisponauxo. 37 de	
		1 mile	
12			
10 15	28	25	20
	olet wet buit tempe		

V BRATION DATA AFTER CONSTRUCTION (dated on July 22nd)

	T)	Q)	(3)	(j)	- (j)	$\phi_2^{(i)}$	T.	2	12
A	27~~55	6~-14	27~59	28~60	6~-14	1842	54~78	6~-12	5~~37
В	20 ~44	8~-22	25~41	23~-57	7.~*7	16-~30	40 ~78	8 ~ 16	13 -23

նստվ

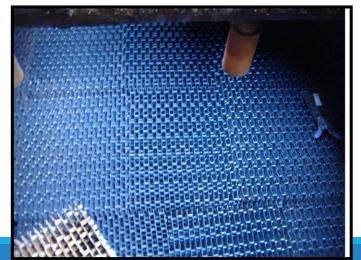
V BRATION DAT/	\ (dated o	n Sep. 2	8th)						(µm)
	- 0°	2	- 3)	(0)	(ii)	(0)	т.	×	(9) (9)
Λ	26 - 52	8 ~15	24 ~53	26 ~ 51	€·~′4	17.~41	22.~72	9 ~ 14	17 ~ 37
Б	19~~44	16~-24	20~-50	20 ~ 48	7~ 18	21~34	30~ 78	8~.17	14~-33

Vibration values at motor tested on July 22nd is similar to the one dated on Sep. 28th. In addition they are smaller than design initial value in be ow table. Therefore, no vibration issues were found

Frequency	rpm	(Design initial value)	(Vibration tolerance)			
(Hz)	(min ⁻¹)	Vibration Quantile (um P-P)				
	1500	80	200			
50	1000	115	290			
50	750	155	390			
	600	190	475			
	1600	65	160			
60	1200	95	240			
60	900	130	325			
	720	160	400			

Design initial value (JIS B 8330-2000): Full amplitude upon vibration speed form/s Vibration tolerance (JIS B 8330-2000): Full amplitude upon vibration speed 15mm/s

【Vibration frequency analysis】



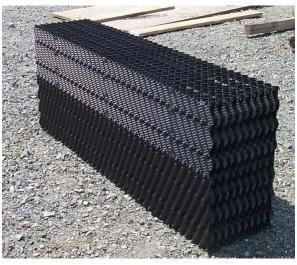
Filling replaced due to low performance by adhering slime and dust

Filling replaced due to buckling by adhering slime and dust gaining the weight

$3 EXPERIENCE (Wood \rightarrow FRP)$

Replaced top deck with FRP

(4) Repair (FRP fan blade)



SPARE PARTS

Kuken provides main spare parts for wet cooling tower.

(Both counterflow and crossflow type)

Motor Gear Box Fill Fan Blade Eliminator Coupling etc.

COMPONENTS - SPLASH TYPE FILLING

- For bad quality water

Kuken looks forward to working with you. Thank you!

